
ROS 2-based Implementation of Advanced
Control for a Teleoperated Surgical Robot

Master Thesis

In partial fulfillment of the requirements for the degree

"Master of Science in Engineering"

Study program:

Mechatronics and Smart Technologies - Mechanical
Engineering

Management Center Innsbruck

Supervisor:

FH-Prof. Yeongmi Kim, PhD

Author:

Liam Joseph Nolan

52315010

Declaration in Lieu of Oath

„I hereby declare, under oath, that this master thesis has been my independent work
and has not been aided with any prohibited means. I declare, to the best of my knowl-
edge and belief, that all passages taken from published and unpublished sources or
documents have been reproduced whether as original, slightly changed or in thought,
have been mentioned as such at the corresponding places of the thesis, by citation,
where the extend of the original quotes is indicated.“

Place, Date Signature

II

Acknowledgement

First and foremost, I would like to thank my supervisor, Prof. Yeongmi Kim, PhD. This
research would not have been possible without her tireless dedication, support, and
willingness to sacrifice sleep and good weather in the pursuit of robotic excellence. I
would also like to thank my colleague, Michael Messner, for his support in repairing
the system no matter how many times I managed to break it in new and exciting ways.
I would also like to thank Darren Collins both for being the catalyst of my career in
robotics and for inspiring countless other roboticists through his work with FRC team
2046. Finally, I would like to thank my father, Joseph Nolan, for not only providing me the
brain necessary to conduct this research, but also for his constant support throughout
the years.

III

Abstract

The advancement of laparoscopic surgical robotics has contributed significant progress
to the field of minimally invasive surgery; however, their high cost limits widespread
adoption in research and training efforts. This system utilizes affordable, off-the-shelf
hardware to produce an accessible development platform for research purposes. The
system utilizes ROS 2’s distributed framework in an effort to improve real-time sys-
tem performance and enable future software architecture scalability. Advanced system
identification methods were employed to characterize the system, and an advanced
control strategy was designed around this characterization. Experimental validation
has demonstrated the system’s ROS 2 based architecture in combination with the ad-
vanced system identification and control methods reduced system positional error by up
to 92.1% over the previous implementation while also offering improved system scal-
ability. The results found through these experimental tests confirm the feasibility of a
cost-effective surgical robotic system with advanced control strategies, contributing to
the advancement and accessibility of the next generation of robotic assisted surgical
systems.

Keywords: Advanced Control Engineering, LQR Control, LQI Control, Feedforward
Control, ROS 2, Nonlinear Control, Gain Scheduling, Medical Robotics, Laparoscopic
Surgery

IV

Contents

1. Introduction 1
1.1. Background and Context . 1
1.2. Problem Statement . 1
1.3. Research Aim and Objectives . 2
1.4. Scope . 2

2. Background and State of the Art 4
2.1. The da Vinci Research Kit . 4
2.2. The Raven II Surgical System . 5
2.3. Robot Operating System 2 . 6
2.4. Control Techniques in Robotic Surgery . 7
2.5. System Identification Techniques in Robotic Surgery 8
2.6. Summary and Research Motivation . 8

3. Desktop Teleoperated Surgical Training System 9
3.1. Overall System Architecture . 9

3.1.1. MTM Overview . 10
3.1.2. PSM Overview . 11

3.2. MTM Mechanical Design . 12
3.2.1. Superstructure Design . 13
3.2.2. Arm Joint Design . 13

3.3. MTM Electrical Architecture . 15
3.3.1. System Overview . 15
3.3.2. Joint Subsystems . 15
3.3.3. Gimbal Subsystem . 16

3.4. PSM Mechanical Design . 16
3.4.1. Overview . 16
3.4.2. Superstructure . 16
3.4.3. Roll Axis . 17

V

3.4.4. Pitch Axis . 18
3.4.5. Insertion Axis . 19
3.4.6. Tool Cart and End Effector . 20

3.5. PSM Electrical Architecture . 21
3.6. System Software Architecture . 22

3.6.1. MTM Software . 22
3.6.2. PSM Software . 22

3.7. System Controller Design . 23
3.8. System Kinematics and Coordinate Frames 23

3.8.1. MTM Coordinate Frame . 23
3.8.2. PSM and Tool Coordinate Frame 25

4. Implementation on Current Hardware 26
4.1. Software Architecture . 26

4.1.1. ROS 2 System Architecture . 26
4.1.2. MTM Modeling and Visualization 27
4.1.3. MicroROS Implementation . 28
4.1.4. MTM Data Streaming and filtering 30
4.1.5. MTM to PSM Communication Protocol 30
4.1.6. PSM Software . 32

4.2. System Identification . 35
4.2.1. Roll Joint Open Loop Step Response 35
4.2.2. Closed Loop Excitation Through PRBS 36
4.2.3. Multi-point System Identification 37

4.3. Controller Design . 42
4.3.1. Original PID Controller . 42
4.3.2. MPC . 43
4.3.3. Gain Scheduling and Adaptive Control 43
4.3.4. LQR and LQI Control . 46
4.3.5. Feedforward Control . 51
4.3.6. Comprehensive Control Strategy 52

5. System evaluation 53
5.1. Overview of Experiments . 53
5.2. Control Algorithm Performance . 54

5.2.1. Sinusoidal Path Following Experiment Results 54

VI

5.2.2. Target Following Experiment . 58

6. Conclusion and Future Work 61
6.1. Key Findings . 61
6.2. Limitations . 61
6.3. Recommendations for Future Work . 62
6.4. Final Remarks . 62

Bibliography VIII

List of Figures X

List of Tables XI

A. Source Code Repositories XII
A.1. PSM Firmware . XII
A.2. MTM Firmware . XII
A.3. MATLAB Scripts . XII
A.4. MTM SDF Model . XII
A.5. MTM Joint Publisher . XIII

VII

1. Introduction

1.1. Background and Context

Laparoscopic surgery offers a minimally invasive option, significantly cutting down on
patients’ postoperative pain and recovery time. Yet, the intricate dexterity this technique
demands has created a clear need for robotic assistance. As a result of this need sys-
tems like Intuitive Surgical’s da Vinci have been operating since 1999 [1]. While these
systems have proven their ability at reducing recovery time, they also come with pro-
hibitive costs and technical complexities, making them largely out of reach for many
researchers. This creates barriers for further advancements in robotic assisted surgery
and as a result, researchers at MCI previously developed an affordable, desktop oper-
ated surgical robotic system.

1.2. Problem Statement

While this system was originally effective in creating an affordable alternative to exist-
ing solutions, its dynamic performance and software architecture left significant room
for improvements in performance. The software architecture was implemented using a
C based Arduino framework. This lacked many features necessary for system develop-
ment. Originally, the system was controlled with a tuned PID controller. This controller,
while providing basic control over the system, lacked the performance necessary to
carry out more complex and precise motion paths. The system was also highly non-
linear in nature, and as the control target deviated from the system origin point, its
performance suffered, resulting in inadequate control behavior.

1

1.3. Research Aim and Objectives

The goal of the research conducted in this thesis was twofold. First, to implement a
Robotic Operating System 2 (ROS 2) framework for the existing system. ROS 2 is
the current industry standard open-source distributed robotics middleware framework,
making it well suited for the dynamic, precision-focused requirements of surgical robotic
systems. Its modular nature allows for the development of multiple complex subsystems
in parallel, and its framework can be easily adapted to accommodate future additions
or improvements to the platform. Additionally, ROS 2 offers many essential tools for
complex robotic systems, such as system visualization, collision detection, and frame
transformation frameworks. Porting the existing system to this ROS 2-based framework
would allow access to these benefits and facilitate further development of the system in
the future.

Secondly, due to the lack of dynamic performance and control in the current system,
this research aimed to develop a more robust characterization and control strategy to
address its nonlinear nature. The improved characterization strategy involves compar-
ing the results of step response experiments to closed-loop excitation data to better
model the system. More advanced control strategies, such as Linear Quadratic Reg-
ulator (LQR) and Linear Quadratic Integral (LQI) controllers with feedforward control,
could then be applied to this system model. Additionally, gain scheduling techniques
would be utilized to adapt the controller to the system’s highly nonlinear behavior.

1.4. Scope

This thesis focuses on the implementation of an adaptive control framework within a
ROS 2 based architecture for a teleoperative laparoscopic surgical robotic test plat-
form. The scope of the research includes the migration of the existing robotic system
from a C-based Arduino framework to ROS 2, the development of advanced control
strategies to address system nonlinearities, and the experimental validation of the pro-
posed control methods using a laboratory-scale test platform.

Clinical application and in vivo testing are beyond the scope of this work; thus, the
system is evaluated exclusively in controlled lab environments. The research prioritizes
software architecture and control performance over hardware design improvements.
Furthermore, the adaptive control methods are tested on predefined motion trajectories

2

and system responses, which may not cover the full range of operational scenarios
encountered in actual surgical procedures.

3

2. Background and State of the Art

This chapter serves as an overview of the current state of the art regarding low-cost
teleoperative surgical training systems. This section will explore their architecture, ad-
vantages, and disadvantages. Additionally, this section will delve into current control
standards and strategies that these systems use and will discuss the ROS 2 and its
applications.

2.1. The da Vinci Research Kit

The da Vinci Research Kit (dVRK) is a research platform developed through a collab-
oration between academic institutions, Johns Hopkins University and Worcester Poly-
technic Institute, and Intuitive Surgical Inc. in 2012. It consists of first-generation da
Vinci components that allow for a common development platform between institutions
for the research of robotic-assisted surgery. The dVRK consists of two da Vinci master
tool manipulators (MTM), two da Vinci patient side manipulators (PSM), a stereo viewer,
a foot pedal tray, manipulator interface boards (dMIBs), and a basic accessory kit. [2]

At the time of writing in 2025, the dVRK program has been used by 40 research centers
in 10 countries [3]. It offers a high-performance platform for researchers using hardware
that would otherwise be retired. However, it is not without its disadvantages. The
system has a very large footprint; three different pieces of large capital equipment are
required by this system, and it is not easily transportable. Additionally, the system is
expensive to acquire and maintain, creating a high barrier to entry for many applications.
Because of these limitations, researchers recognized the need for additional options in
the surgical robotics research space. This ultimately resulted in the Raven II [4].

4

Figure 2.1.: The Original Da Vinci Research Kit.(Reprinted from [5] Fig 1)

2.2. The Raven II Surgical System

The Raven II is an open-architecture robotic surgical system developed by the Uni-
versity of Washington and the University of California, Santa Cruz. It is a low-cost
alternative to the dVRK and draws much design inspiration from the original da Vinci’s
capstan cable drive system. The Raven II is a continuation of the original Raven system
and was designed to be as modular as possible to make the system more portable than
existing surgical systems. The Raven II system consists of two cable-driven PSMs, a
cable-driven Mantis Duo MTM, a stereoscopic surgeon viewer, and control electronics

Each of the Raven II’s 7-DOF arms are remotely driven by a cable system powered
by brushless DC motors. Encoders are directly coupled to the motors, which leads to
difficulties in state estimation. Cable stretch and linkage flexure lead to discrepancies
between the actual joint angles and the motor output. This design can be seen in
Figure 2.2.

The Raven II is driven by the Mantis Duo. The MTM design features a novel approach
where each MTM is suspended by four driven cables. These cables allow for simulta-
neous positional sensing of the surgeon’s movements while providing haptic feedback.

While the Raven II is a smaller alternative to the dVRK, it still requires a significant
investment in hardware, costing $250,000 USD [7] for a complete system. This cost
remains prohibitive for many research institutions and limits the system’s accessibility.

5

Figure 2.2.: The Raven II surgical system design. In this figure the cable driven design can
clearly be seen (Reprinted from [6] Fig 1)

2.3. Robot Operating System 2

Robot Operating System 2 (ROS 2) is a Linux-based, open-source robotics middleware
suite consisting of software frameworks for robotic applications. ROS 2 is a direct evo-
lution of ROS 1 and improves upon many aspects. While ROS 1 relied on a centralized
ROS Master, ROS 2 uses the Data Distribution Service (DDS) for decentralized, peer-
to-peer communication, eliminating the single point of failure present in the master node
and increasing system reliability. ROS 2 also provides full real-time performance and
supports most common microcontrollers through Micro-ROS, which is critical for many
modern applications.

ROS 2 has proven itself as an industry standard, being utilized frequently in cutting-
edge applications such as autonomous vehicles, humanoid robotics, and even surgical
robotics [8]. Its suite of tools and utilities provides researchers with valuable develop-

6

ment resources, including system visualization, collision detection, and frame transfor-
mation libraries, all of which are valuable assets to a Robotic Autonomous System.

Figure 2.3.: An overview of a typical ROS 2 node network consisting of subscription nodes and
publishing nodes, actions and service types can also be seen (Reprinted from [9]
Fig 2)

2.4. Control Techniques in Robotic Surgery

Precise control, haptic feedback, complex system dynamics, and high safety standards
drive the need for sophisticated control techniques in modern robotic surgery systems.
Industry-leading platforms such as Intuitive Surgical’s da Vinci system utilize Model
Predictive Control (MPC) [10], enabling comprehensive modeling and prediction of sys-
tem behavior. These systems also employ hierarchical control architectures (combining
high-level planning with low-level execution) along with adaptive learning-based con-
trollers to compensate for tissue deformation and operate effectively in dynamic envi-
ronments.

Surgeon feedback is equally critical for successful surgical outcomes. Advanced haptic
feedback and force control algorithms are implemented in MTMs to provide surgeons
with precise tactile information [11]. Furthermore, real-time imaging and navigation sys-
tems deliver valuable intraoperative feedback to enhance surgical precision [12]. The

7

integration of artificial intelligence has revolutionized surgical robotics in recent years.
Deep learning approaches now enable advanced perception and decision-making ca-
pabilities within these systems. For instance, real-time tissue identification [13] allows
for dynamic force modeling, enabling systems to adapt intelligently to varying tissue
properties during procedures.

2.5. System Identification Techniques in Robotic Surgery

Implementing advanced control strategies requires a dynamic understanding of system
behavior, which can only be achieved through robust system identification. The highly
nonlinear nature of many robotic systems demands excitation methods that remain ef-
fective under nonlinear conditions. Multisine and chirp signals form the basis for many
modern system identification techniques [14], and are increasingly combined with re-
inforcement learning approaches [15]. In surgical robotics, where safety is paramount,
a multi-stage identification process is critical. For example, Intuitive Surgical performs
low-level actuator characterization using step-response tests to validate settling time,
overshoot, and stiffness in every motor and joint. These physics-based models are
then enhanced with AI/ML layers to handle complex surgical interactions. This hybrid
approach delivers uncompromising system dynamics and performance [16].

2.6. Summary and Research Motivation

Modern robotic-assisted surgical systems provide a powerful framework to assist doc-
tors and surgeons, enabling them to improve patient quality of care while reducing post-
operative recovery time. While these systems are incredibly capable, their high cost
and barriers to entry have limited accessibility for researchers. This limitation has led to
the development of several lower-cost alternatives, such as the Da Vinci Research Kit,
Raven II, and the Desktop Surgical System.

These systems inherit many features found in commercial solutions, including a ROS-
based architecture and advanced control and identification techniques. However, the
gap between their implementation and the current state of the art remains apparent.
This research aims to reduce this technical gap by, upgrading the software architecture
to ROS 2, implementing more advanced system identification techniques, and incorpo-
rating adaptive control to improve system performance.

8

3. Desktop Teleoperated Surgical Training
System

In an effort to further advance the field of robotic-assisted surgery, researchers at MCI
have developed a Desktop Teleoperated Surgical Training System[17]. The system’s
design was heavily inspired by the dVRK and Raven II, while trying to maximize per-
formance and minimize cost. Because this system serves as the foundation for the
research in this paper, and in depth understanding and exploration of this system is
required.

3.1. Overall System Architecture

The system consists of two main components, the MTM and the PSM.

While the system was designed to include both left and right MTMs and PSMs. The
complexities associated with the construction of control of both sides these systems
lead to a reduction in the research scope to only one side of the system. Consequently,
only one MTM and one PSM were manufactured and developed.

The MTM measures the operator’s motion and communicates it to the PSM, which then
replicates the movements. These individual systems will be explored further in the
following sections, and an overview of the system can be seen in Figure 3.1.

9

Figure 3.1.: Overview of the Desktop Teleoperated Surgical Training System, illustrating the
MTM and PSM components.

3.1.1. MTM Overview

The MTM measures the operator’s motion through a 7-DOF linkage, actuated by the
user. The associated DOFs and their types are indicated in Table 3.1.

Table 3.1.: MTM Joint Classification and Positional Sensing.

Joint Classification Dof Name Positional sensing

Overall system positioning
J0

12-bit absolute magnetic encoderJ1
J2

Instrument positioning

G0 Hall Effect Sensor
G1

Analog PotentiometerG2
G3

These joints allow the operator to communicate desired motions to the PSM. The J0–J2
DOFs dictate the endpoint position, while G0–G3 control endpoint orientation and state.

10

The MTM should allow for accurate interpretation of the operator’s intended motion
while also minimizing the force perceived by the operator. This perceived force require-
ment drove the design toward a gravity compensation system (GCS).

An overview of the MTM with indications to the specific DOFs can be seen in Figure 3.2.

Figure 3.2.: Overview of the MTM with indicated DOFs.

3.1.2. PSM Overview

The PSM has 7 primary DOFs, classified as shown in Table 3.2.

Table 3.2.: PSM Joint Classification and Drive System.

Joint Class DOF Name Drive Type Positional sensing

Overall system
positioning

Roll
Brushless DC Motor

12-bit absolute magnetic
encoders

Pitch
Insertion

Instrument
positioning

Instrument Roll

Servo Motor Servo feedback
Instrument Pitch
Instrument Tilt
Instrument Grasp

11

An overview of the system with indications to the specific DOFs can be seen in Fig-
ure 3.3.

Figure 3.3.: Overview of the PSM with indicated DOFs.

3.2. MTM Mechanical Design

The MTM mechanical design can be separated into three subsystems, the arm (J0-J2),
the gimbal (G0-G3), and the superstructure.

The arm subsystem is the primary architecture responsible for measuring the operator’s
position relative to the global reference frame. Three revolute joints with internal abso-
lute magnetic encoders are coupled via rigid aluminum extrusions, allowing accurate
estimation of the overall system positioning in 3D space.

The Gimbal subsystem, which is responsible for measuring the desired surgical instru-
ment inputs, is a self-contained, 4-axis analog sensing apparatus. A 3D-printed shell
contains the necessary analog sensing devices for determining the desired wrist posi-
tion.

12

The superstructure is an aluminum extrusion structure that offsets the arm and gimbal
subsystems from the table to allow space for manipulation.

3.2.1. Superstructure Design

The superstructure design is relatively straightforward. With no moving parts, it is purely
designed to offer a platform on which the more complicated mechanics of the MTM can
be mounted.

Several pieces of 20mm x 20mm aluminum extrusion are bolted together, offering a
stable and modular platform. Previously, a 3D-printed piece held an Arduino Mega at
the top of the superstructure, but this was updated to hold a Teensy 4.1 on the main
superstructure beam to allow for easier access and wiring.

3.2.2. Arm Joint Design

The arm joints of the MTM feature relatively straightforward designs. The arm sub-
system is rigidly coupled to the superstructure with a 3D-printed block, to which the
origin of the arm’s J0 joint is connected. Each joint is a simple revolute joint, directly
coupled to an EAT-6012-A06 12-bit absolute magnetic encoders. These joints are then
rigidly connected to each other through aluminum tubing, held in place by set screws.
A detailed exploration of the J1 joint can be seen in Figure 3.4.

13

Figure 3.4.: Detailed view of the MTM’s J1 joint design (Reprinted from [17] Fig 2.1)

The design of these joints was driven by the requirement to minimize friction. Increased
frictional forces in any of these joints would result in an increase in perceived force
by the operator. Roller bearings were utilized to minimize these frictional forces, and
system mass was also reduced to lower both gravitational and inertial forces felt by the
operator. However, in an effort to completely minimize forces felt by the operator, a GCS
was implemented into the J0 joint.

The GCS consists of a brass cylinder, carefully massed to offset the gravitational forces
felt by the system. The exact placement and mass of this cylinder were algorithmically
determined in [17] A detailed view of the mechanical design of this system can be seen
in Figure 3.5.

14

Figure 3.5.: Detailed overview of the MTM’s GCS design. (Reprinted from [17] Fig 2.9)

3.3. MTM Electrical Architecture

3.3.1. System Overview

The MTM electrical architecture was originally based on an Arduino Mega 2560 micro-
controller. This was later upgraded to a Teensy 4.1 microcontroller due to its compati-
bility with ROS2 and micro-ROS frameworks. Each DOF of the MTM is equipped with
its own independent sensor for full positional sensing.

3.3.2. Joint Subsystems

Joints J0-J2 use AEAT-6012-A06 12-bit absolute magnetic encoders coupled to each
joint axis for positional sensing. These encoders provide a theoretical positional accu-
racy of ±0.088◦ per joint. The encoder signals are sent to the Teensy 4.1’s digital I/O
pins and are supplied 5V power directly from the Teensy 4.1.

15

3.3.3. Gimbal Subsystem

The gimbal design changed drastically throughout the research. Initially, it utilized an
MPU-6050 3-DOF IMU coupled with a Hall effect sensor for positional sensing [18].
However, during the course of this research, this subsystem was updated to replace
the IMU with a series of three potentiometers coupled to a Hall effect sensor. G0 is
measured using a Hall effect sensor on a lever arm linkage. This is then coupled to a
modified FJN10K-C0 two-axis joystick potentiometer, which handles the angular sens-
ing of G1 and G2. This joystick is coupled to the G3 potentiometer through a 3D-printed
linkage. G0 used a SS495A Hall Effect Sensor, G1/G2 used a FJN10K-C0 two-axis
joystick potentiometer, and G3 used a 3382H-1-103 Potentiometer.

Each of these sensors is supplied 3.3V power from the Teensy 4.1, and their resultant
analog signals are sent to the Teensy 4.1’s analog input pins.

3.4. PSM Mechanical Design

3.4.1. Overview

The PSM mechanical architecture is a 7-degree-of-freedom robotic system designed to
replicate surgical instrument movements with high precision. The design is fundamen-
tally inspired by the da Vinci Surgical System’s remote center of motion mechanism,
which maintains a fixed pivot point at the surgical incision site - a critical feature for
minimally invasive surgery. The PSM can be divided into five primary subsystems.,
Superstructure and base, Roll axis, Pitch axis, Insertion axis, and Tool cart and end
effector.

3.4.2. Superstructure

The superstructure is constructed from 80/20 aluminum extrusion and serves as the
base upon which the other components are mounted. The base of the superstructure
also houses the necessary electronics for the control of the PSM.

16

3.4.3. Roll Axis

The roll axis implements a revolute joint providing ±30◦ of rotation about the vertical
axis. The system rotates in two roller bearings attached to the superstructure with a
bearing block. A laser-cut acrylic wheel serves as the capstan drive of the system and
is clamped to the central shaft. This wheel is connected to a brushless DC motor via
steel cabling, offering a 20:1 reduction in a zero-backlash setup. This shaft terminates
in a forked aluminum extrusion structure, to which the pitch subsystem connects. A limit
switch is attached to the superstructure to allow for zeroing of the system.

This design offered a simple way to achieve precise, zero-backlash performance in an
easy-to-assemble and low-cost package. A detailed depiction of this subsystem can be
seen in Figure 3.6.

Figure 3.6.: Detailed view of the mechanical design of the roll axis, highlighting the main shaft
design. (Reprinted from [17] Fig 2.10)

To minimize forces seen by the actuator, a gravity compensation system (GCS) was ap-
plied to this joint. This GCS consisted of two adjustable brass counterweights hanging
directly below the capstan drive. Their mass and placement were once again algorith-
mically determined by previous research conducted by Walder [17]. A detailed view of
the design of this GCS can be seen in Figure 3.7.

17

Figure 3.7.: A detailed view of the PSM’s pitch and roll GCS design. (Reprinted from [17] Fig.
2.22)

3.4.4. Pitch Axis

The pitch axis replicates the Da Vinci’s characteristic double parallelogram mechanism,
which creates a virtual RCM distal to the joint. For ease of manufacturing, much of the
PSM’s pitch subsystem was designed to be 3D-printed, and for ease of assembly, many
of the couplings were press-fits. This led to sagging of the mechanism and resulted in
some of the linkages requiring maintenance during prolonged operation, but, overall,
the linkage design was sound and maintained a remote center.

The pitch axis was coupled to the roll axis through the forked aluminum extrusion struc-
ture previously discussed in the PSM mechanical design section. Similar to the roll axis,
the pitch axis was driven by a capstan drive system coupled to a brushless DC motor
through steel cabling. A limit switch at the extreme limits of motion was once again
used for zeroing the system, and the mechanism ultimately resulted in a ±30◦ range of
motion. A detailed view of the pitch subsystem design can be seen in Figure 3.8.

Once again, a GCS was designed for the pitch subsystem. This design followed similar
trends to the roll axis, placing a brass counterweight below the axis to reduce the force
seen by the actuator. The design of this can be seen in Figure 3.7.

18

Figure 3.8.: Detailed view of the PSM’s pitch axis mechanism. (Reprinted from [17] Fig 2.13)

3.4.5. Insertion Axis

The insertion axis design is relatively straightforward. A brushless DC motor coupled
directly to a rack and pinion mechanism translates the rotary motion of the motor into
the linear motion needed for the insertion axis. For ease of manufacturing, the majority
of this mechanism was 3D-printed, and it was coupled to the pitch subsystem through
a bolted connection via the end forks of the pitch linkage. For positional sensing, the
carriage was coupled to an encoder through a belted connection. A detailed diagram
of this subsystem can be seen in Figure 3.9.

19

Figure 3.9.: Detailed view of the PSM’s insertion axis mechanism. (Reprinted from [17] Fig 2.14)

3.4.6. Tool Cart and End Effector

The tool cart is responsible for driving the surgical instrument. This system uses off-
the-shelf Intuitive Surgical instruments. These instruments are driven by a belted disc
mechanism internal to the instrument. The tool cart houses four servo motors coupled
to these discs with a spring-loaded compliance mechanism, as shown in Figure 3.10.

20

Figure 3.10.: Detailed view of the PSM’s tool cart, highlighting the spring-loaded compliance
mechanism. (Reprinted from [17] Fig 2.15)

3.5. PSM Electrical Architecture

The PSM electrical architecture is based on a Teensy 4.1 as the control unit of the
system. Table 3.3 showcases each joint’s associated electrical components.

Table 3.3.: PSM Joint Specifications

Joint Drive Motor Motor Driver Positional Sensing
Pitch

Maxon 273752 15V
DC motor

MD13S Cytron 13
Amp

Broadcom HEDS-5540
encoder

Roll
Insertion
Tool Roll

MG966r Servo None Servo Feedback
Tool Tilt
Tool Pitch
Tool Grasp

21

3.6. System Software Architecture

As noted earlier in this paper, the initial software framework was implemented in an
Arduino C-based environment. While the system has since been migrated to a ROS 2
architecture, the original implementation remains relevant for context and reference.

The software was divided into two primary components: the MTM software and the
PSM software. These subsystems worked in tandem to enable real-time teleoperation,
with the MTM capturing user inputs and the PSM replicating movements precisely.

3.6.1. MTM Software

The MTM software was responsible for several critical functions. Sensor data was read
and processed from each of the DOFs associated sensors. Data was then filtered
and converted into angular measurements based on predefined system parameters.
Forward kinematics were then used to calculate the end effectors position based on
angular measurements from sensors. Denavit-Hartenberg (DH) parameters were used
for the forward kinematic calculations. All of the associated MTM data had to be parsed
into a single serial string and output to the serial monitor for later acquisition by the
PSM. In addition, sensor overflow was carefully monitored and spike detection logic was
implemented to catch any spikes in sensor data. All relevant data had to be packaged
with start/end markers for easy access and parsing by the PSM.

3.6.2. PSM Software

The PSM software was responsible for the control and drive of the PSM based on the
movements of the MTM. Upon receiving target data from the MTM through the serial
monitor the data had to be parsed and processed using a custom parsing function. The
target position was then extracted from this data. Each joint was controlled through
a PID control function with predetermined gains. Each joint had to be homed to its
0 position and the absolute encoder 0 value was also set through a ramp-up homing
sequence in which the system carefully managed joint speed as it approaches the limit
of motion. During operation limit switch state was monitored to ensure each joint was
not colliding with the mechanical hard-stops. To ensure the surgical tool discs were
engaged a tool catch procedure ran each servo through its complete range of motion
and the PWM frequency was set to ensure that it lie outside of human range of hearing.

22

3.7. System Controller Design

Originally a PID controller was designed for the system using the Ziegler-Nichols
method. This approach involved determining the critical gain (Kcr) and periodic time
(Pcr) for each joint through root locus analysis. These values were then used with the
McCormack tuning rules to calculate the initial PID constants, as presented in Table
3.4.

Table 3.4.: Initial PID Constants

Joint Proportional gain (Kp) Integral gain (Ki) Derivative gain (Kd)

Roll 35.0 50.0 5.0
Pitch 60.0 110.0 15.0
Insertion 45.0 800.0 3.8

However, initial trials with these values resulted in unstable system motion and con-
sistent undershoot[17]. As a result of these shortcomings, manual tuning of the PID
coefficients was required to achieve satisfactory performance. However, even these
manually tuned PID gains still resulted in unstable oscillations, particularly at the ex-
treme ends of the range of motion. Consequently, the system was often operated using
a simple P controller with manually selected gains, leading to very poor overall system
performance.

3.8. System Kinematics and Coordinate Frames

It is critical to understand the system kinematics and coordinate frames for this system.
This section will illustrate the defined coordinate frame positions with the system in its
respect 0 positions.

3.8.1. MTM Coordinate Frame

As stated earlier, the MTM has 7 degrees of freedom. It is imperative to understand the
coordinate frame of each of these axes. Figure 3.11 showcases each of these axes in
their zero position with their respective coordinate frames attached. A detailed view of

23

the updated gimbal design with each of the axes in their zero position can be seen in
Figure 3.12.

Figure 3.11.: The MTM and its associated degrees of freedom shown in their zero-position with
DH-coordinate frames attached (Reprinted from [17] Fig 3.1)

Figure 3.12.: The updated gimbal and its associated degrees of freedom shown in their zero-
position. (Reprinted from [19] Fig 2.1)

24

3.8.2. PSM and Tool Coordinate Frame

The PSM and its associated tool have a total of 7 degrees of freedom. Each of these
degrees of freedom can be seen in their zero position in Figure 3.13.

Figure 3.13.: The PSM and endowrist tool shown in their zero-position with DH-coordinate
frames attached, according to the cDH convention. (Reprinted from [17] Fig 3.2)

25

4. Implementation on Current Hardware

4.1. Software Architecture

This section will serve as an overview of the current system software architecture and
will provide an in-depth analysis of how the current ROS 2 Node structure works.

4.1.1. ROS 2 System Architecture

There were 4 main nodes in the systems ROS 2 design. The MTM node was respon-
sible for streaming sensor data from the MTM, while also calculating joint angles and
relaying these angles to the joint publisher node. The system model node consisted of
an SDF model of the MTM allowing for visualization of the MTM’s position. Additionally,
target end effector position could be calculated from this model through frame trans-
formations. The joint publisher node acted as intermediate between the SDF model
and the ROS 2 workspace. It relayed the joint angles from the MTM to the SDF model
and the target end effector position to the the PSM node. Finally, the PSM node was
responsible for the control and drive of the PSM. It also broadcasted PSM sensor data
and joint states into the ROS2 workspace.

MTM Node SDF Model
Joint

Publisher
Node

PSM Node

Figure 4.1.: Initial ROS 2 System Architecture for Target Pose Calculation.

Initially, the research aimed for the MTM Node to relay its joint angles to the SDF Model
of the MTM. Subsequently, the Joint Publisher Node would calculate the desired end-
effector position via a TF frame transformation from the base frame to the gimbal origin.
This approach eliminated the need for direct forward kinematic calculations. This ar-
chitecture is illustrated in Figure 4.1. While this method proved effective in accurately
calculating the target pose, real-time performance trials revealed significant limitations.

26

Specifically, while target position extracted from the model demonstrated excellent real-
time performance, a communication issue was found when the Joint Publisher Node
interfaced with the PSM Node. This breakdown was likely caused by memory limitations
in the Teensy 4.1, leading to high latency and noticeable data stuttering.

As a result, a simplified architecture was briefly explored to try to prevent this issue.
This approach directly calculated the target pose using forward kinematics in the MTM
node and then directly relayed this to the PSM node. This simplification of the technical
stack had the potential to increase real-time performance; however, it also increased
the forward kinematics calculation complexity and eliminated the opportunity to use the
SDF model for further research. This architecture is presented in Figure 4.2.

MTM Node PSM Node

Figure 4.2.: Simplified ROS 2 System Architecture for Direct Target Pose Streaming.

Ultimately, this simplified architecture was not chosen. The elimination of the SDF
model would result in limitation of future research resources and as a result the initial
architecture was chosen, and further development efforts were undertaken to eliminate
the data loss issues previously discussed.

4.1.2. MTM Modeling and Visualization

For the modeling of the MTM, the Simulation Description Format (SDF) was chosen
due to its compatibility with ROS 2 and RViz. SDF also supports complex kinematic
structures, including closed-chain kinematics, which is crucial for accurately modeling
the more intricate four-bar style linkages found in the PSM.

Generating the SDF file proved to be a fairly involved process. First, the CAD model of
the MTM system was imported into SolidWorks. To reduce computational complexity,
the model underwent significant simplification. Parts were condensed into their respec-
tive links, identified as Base, J1 (Joint 1), J2 (Joint 2), J3 (Joint 3), G3 (Gimbal Link 3),
G2 (Gimbal Link 2), G1 (Gimbal Link 1), and G0 (Gimbal Link 0). Each of these com-
ponents was created as a singular solid part and then reassembled within SolidWorks
into a complete assembly.

Following this, rotational axes and origins were assigned for each link. A SolidWorks
plugin was then utilized to export the model into a Universal Robot Description For-

27

mat (URDF) file [20]. This URDF file was subsequently converted to SDF using
ros2_sdf_to_urdf [21]. Upon the successful generation of the SDF model, a Python
launch file was developed to facilitate quick and easy visualization of this model within
RViz.

The final result of this effort can be seen below in Figure 4.3.

Figure 4.3.: SDF model of MTM shown in the RViz environment. The gimbal solid models have
been hidden in this model

4.1.3. MicroROS Implementation

Since the teensy 4.1 does not support the full ROS 2 stack, MicroROS was utilized
to allow the microcontroller to communicate with the ROS 2 system. MicroROS is a
lightweight version of ROS 2 designed for microcontrollers and resource-constrained
devices. It provides a subset of the ROS 2 features, enabling communication between
nodes while maintaining low memory and processing overhead.

In order to set up MicroROS on the Teensy 4.1, the following procedure was imple-
mented in both the MTM and PSM nodes to initalize the MicroROS environment:

28

First the necessary Micro-ROS header was included

1 #include <micro_ros_platformio.h>

Listing 4.1: Include Micro-ROS PlatformIO Header

Next, the serial port was configured as the communication transport for Micro-ROS.

Serial.begin(921600);
set_microros_serial_transports(Serial);
delay(2000); // Give time for connection to establish

Listing 4.2: Set Micro-ROS Serial Transport

The default allocator was obtained and used for memory management.

allocator = rcl_get_default_allocator();

Listing 4.3: Initialize Micro-ROS Allocator

The rclc_support_init function initialized the Micro-ROS support structure, which is
a key ROS 2 component

RCCHECK(rclc_support_init(&support, 0, NULL, &allocator));

Listing 4.4: Initialize Micro-ROS Support Structure

Next a ROS 2 node was created

RCCHECK(rclc_node_init_default(&node, "mtm_arm_node", "", &support));

Listing 4.5: Initialize ROS 2 Node

All necessary publisher were created to send messages on specified topics

RCCHECK(rclc_publisher_init_default(
&joint_state_publisher,
&node,

4 ROSIDL_GET_MSG_TYPE_SUPPORT(sensor_msgs, msg, JointState),
"mtm_joint_states"));

Listing 4.6: Initialize Micro-ROS Publishers

Finally, the Micro-ROS executor was initialized. The executor is responsible for manag-
ing the execution of callbacks associated with subscriptions, timers, and other ROS 2
entities.

29

RCCHECK(rclc_executor_init(&executor, &support.context, 1, &allocator));

Listing 4.7: Initialize Micro-ROS Executor

After the Micro-ROS node is initialized and running on the embedded device, a Micro-
ROS agent on the Linux machine can be started

ros2 run micro_ros_agent micro_ros_agent serial --dev /dev/ttyACM0

Listing 4.8: Run Micro-ROS Agent Command

4.1.4. MTM Data Streaming and filtering

The MTM node’s primary purpose is to process incoming sensor data and broadcast it
into the ROS2 workspace in a usable format. The following topics are published into the
ROS2 workspace from the MTM:

Table 4.1.: MTM ROS2 Topics

Topic Name Topic Type Description
mtm_joint_states sensor_msgs/msg/JointState Current angular positions for

all robotic arm joints.
mtm_raw_values std_msgs/msg/Float32MultiArray Unfiltered raw sensor data for

debugging.
target_pose sensor_msgs/msg/JointState Calculated Cartesian (x, y, z)

position of the end-effector in
meters.

It was noticed initially that the mtm_joint_state topic had quite noisy data, resulting in
jitter in the systems that subscribed to this topic. As a result, a simple low-pass filter with
an alpha value of 0.1 was applied to this data before being published. This significantly
reduced noise in the published signal and greatly improved system performance.

4.1.5. MTM to PSM Communication Protocol

As previously established in Section 4.1, there are two separate paths for data commu-
nication between the MTM and the PSM: the direct communication path and the path

30

utilizing the SDF model as an intermediary.

A critical aspect of both communication paths is ensuring Quality of Service (QoS)
protocol matching. QoS allows for the definition of how topics are communicated be-
tween nodes. Ensuring that communicating nodes utilize appropriate and compatible
QoS protocols is essential for software reliability and robustness. For this research, the
QoS reliability and queue depth were modified to ensure proper message delivery.

Initially, an issue arose with the communication protocol between the SDF model and
the PSM node. Data streamed from the SDF model was published to the /model_pose

topic. When this data was plotted, it exhibited high quality with zero latency or lag.
However, when the PSM topic /psm_joint_telemetry subscribed to /model_pose, a
significant loss of data occurred, resulting in lag and stuttering. This led to unacceptable
system performance. After extensive diagnostics, the data performance was improved
by drastically increasing the publishing rate from 100 Hz to 1000 Hz, increasing the
queue depth from 10 to 20, and applying a custom QoS profile:

Increasing the publishing rate to such a drastic level required careful memory consider-
ation to avoid overwhelming the limited memory of the PSM’s Teensy 4.1. As a result,
the model_pose message type was changed from a JointTelemetry message type to
a JointState message type to reduce memory strain.

The specific implementation of the QoS profile can be seen in the following code:

rmw_qos_profile_t custom_qos = {
RMW_QOS_POLICY_HISTORY_KEEP_LAST, // history
15, // depth (queue size)

4 RMW_QOS_POLICY_RELIABILITY_RELIABLE, // reliability
RMW_QOS_POLICY_DURABILITY_VOLATILE, // durability
{0, 0}, // deadline (rmw_time_t sec, nsec)
{0, 0}, // lifespan
RMW_QOS_POLICY_LIVELINESS_SYSTEM_DEFAULT, // liveliness

9 {0, 0}, // liveliness lease duration
false // avoid_ros_namespace_conventions
};

Listing 4.9: Custom QoS Profile Definition

31

4.1.6. PSM Software

The PSM software node’s primary responsibility is the control of the physical PSM sys-
tem. While this task may appear simple on the surface, its implementation was quite
complex, requiring several different software components to work together cohesively.

The PSM node had three primary modes. In Target mode, the PSM node received
target joint angles from the MTM node and the Joint Publisher Node. The PSM would
then drive the system to these target angles using a control algorithm. This mode was
primarily used for the normal operation of the PSM. In sin mode the PSM followed
a sinusoidal trajectory to verify the system’s performance. This mode was primarily
used for testing and validation purposes in the case of smooth, predictable motion. In
trajectory mode PSM followed a predefined trajectory path generated by moving the
MTM. This was used to verify the PSM performance between control strategies across
a consistent, real-world desired trajectory.

The mode was defined in the beginning of the script with the String variable con-
trol_mode. In these modes, the primary codebase remained the same, consisting of
a main.cpp file and multiple helper files. The main difference between the modes was
how the desired target position was generated. In Target Mode, the PSM node sub-
scribed to the /mtm_target_pose topic. In Sin Mode, it generated a sinusoidal joint
angle trajectory based on predetermined amplitude and period parameters. In Trajec-
tory Mode, the MTM was used to generate a trajectory path, which was then stored as
a list in a header file for the PSM to parse as a series of desired target positions.

Sin and Trajectory mode were only intended to be verification modes used to verify the
performance of the control algorithms for the pitch and roll joints. As a result, the tool
was left undriven in these modes and only the overall x,y,z target was considered.

In Target Mode, the tool positioning was considered and as a result the PSM node sub-
scribed to two different topics. For overall positioning of the system, it subscribed to
the /target_pose topic generated by the Joint Publisher Node. This topic provided the
target position in an x, y, z format. The PSM node then used this target position to
calculate the necessary joint angles to achieve this position. Additionally, to determine
the desired tool angles, it subscribed to the /mtm_joint_states topic. This topic pro-
vided the current gimbal angles of the MTM system, which were used to calculate the
necessary joint angles for the PSM system.

The actual calculation of the desired joint angles differed across the operational modes.

32

In Sine Mode, the generated trajectory was already in the form of joint angles, allowing
the joints to be directly commanded to their desired position without further calculation.

For both Trajectory Mode and Target Mode, additional calculations were required to
convert the intended (x, y, z) target position to the actual desired joint angles. For
this calculation, the function computePSMJointAngles, contained within the auxiliary file
psm_compute_joint_angles.cpp, was used. This function took an (x, y, z) target posi-
tion as input and returned a custom structure JointAngles containing the desired joint
angles. The following demonstrates the mathematics behind this calculation.

x, y, z are the Cartesian coordinates of the target position. The joint angles are defined
as:

• Insertion Distance (q3): This is the Euclidean distance from the origin to the
target point, representing the linear extension of the insertion joint.

q3 =
√
x2 + y2 + z2

• Pitch Angle (q2): This angle is derived from the x and y coordinates representing
the roll angle.

q2 =
1

4
arctan(x, y)

The result is then constrained within [−30◦, 30◦].

• Yaw Angle (q1): This angle is derived from the z and y coordinates, representing
the pitch angle.

q1 = −1

4
arctan(z, y)

The result is then constrained within [−30◦, 30◦].

The actual implementation of these calculations can be seen in the following C++ code
snippet:

33

// Function to compute PSM joint angles from Cartesian coordinates
JointAngles computePSMJointAngles(double x, double y, double z) {

JointAngles angles;
4 // Compute insertion distance (q3) as the Euclidean distance

angles.q3 = static_cast<float>(std::sqrt(x ·x + y ·y + z ·z));
// Compute pitch angle (q2) in degrees and constrain
double pitch = (std::atan2(x, y) ·180.0 / M_PI) / 4.0;
pitch = constrain_value(pitch, -30.0, 30.0); // Assuming

constrain_value is defined
9 angles.q2 = static_cast<float>(pitch);

// Compute yaw angle (q1) in degrees and constrain
double yaw = -(std::atan2(z, y) ·180.0 / M_PI) / 4.0;
yaw = constrain_value(yaw, -30.0, 30.0); // Assuming constrain_value is

defined
angles.q1 = static_cast<float>(yaw);

14 return angles;
}

Listing 4.10: C++ Function for Joint Angle Calculation

The PSM software stack was quite extensive and, as a result, was broken up into sev-
eral components to improve readability and debugging. These software subcompo-
nents and their description can be seen in Table 4.2**.

Table 4.2.: Overview of Primary Files in the PSM Software Codebase

.cpp File Name Purpose
config.h Central repository for all configuration parameters and variables.
LQR.cpp LQR and LQI control algorithms.
PID.cpp PID control algorithm.
axis_conversion.cpp Converts axis encoder counts to angular value.
encoder_reader.cpp Reads raw encoder data.
gain_schedule.cpp Gain scheduling algorithm and interpolation for control scheme.
helper_functions.cpp Various helper and utility functions.
homing.cpp Homing sequence and logic.
main.cpp Main entry point tying all other files together.
psm_joint_angles.cpp Joint angle calculation of PSM based off target position.

34

4.2. System Identification

For this research, proper controller design was paramount. However, a high-
performance controller could not be designed without a fundamental understanding
of the system’s dynamics. To achieve this, a robust system identification scheme was
developed.

The two primary joints of interest were the roll and pitch joints. These joints exhibited
complex system dynamics and a high degree of nonlinearity. An exact system identifi-
cation approach was tailored to each joint’s unique dynamics.

4.2.1. Roll Joint Open Loop Step Response

The roll joint can be mechanically described as a pendulum. Perturbations applied to
the system move the joint away from its 0◦ position, but when the perturbation ceases,
gravitational forces return the joint to its 0◦ position. The system was also determined to
have a fairly consistent and predictable transfer function. Specifically, when the brush-
less motor was driven at a specific voltage, the resulting positional change of the system
was consistent across trials. As a result of these factors, a step response characteriza-
tion was deemed an excellent method for system identification.

A step response characterization is a common system identification method in control
engineering. In this technique, the system’s input is abruptly changed from one value to
another, and the resulting system response is measured and used to characterize the
system’s dynamics.

For the roll axis, a very lightly tuned PID controller was initially employed to drive the
system to the intended point of characterization. A predetermined delay allowed the
system to settle into a stable state. Upon completion of this delay, the current motor
voltage value was stored, then scaled by a factor of 1.1 before being sent to the motor.
Both the motor voltage input over time and the positional output of the roll joint over time
were recorded. This system response data was saved as a CSV file and subsequently
loaded using a custom MATLAB script. This script parsed the data and then fitted a
second-order transfer function to the system response using MATLAB’s tfest com-
mand. Finally, state-space matrices could then be extracted from this transfer function
using MATLAB’s ss command.

35

4.2.2. Closed Loop Excitation Through PRBS

Initial characterization of the pitch subsystem used a similar approach to the roll subsys-
tem. A step response was applied, and the resulting response was used to characterize
the system. However, several issues were found with the step response characteriza-
tion of the pitch subsystem.

Due to the mechanical nature of the joint, the pitch subsystem’s response was highly
nonlinear. A slight change in voltage applied to the motor resulted in large changes in
the pitch system’s position, and this behavior was not consistent between trials. The
same change in motor voltage would not result in the same system response. Addi-
tionally, when a small increase in voltage was applied to a stable system position, the
pitch subsystem would drive to the end of its range of motion and contact the hard
stop. This overshooting was a result of the pitch subsystem’s extremely sensitive sys-
tem response as its angle increased. This sensitivity was a direct consequence of the
mechanical design of the pitch subsystem, where the force applied by the gravity com-
pensation system drastically reduced as the angle of the pitch subsystem increased.

As a result of these complexities, a different approach had to be implemented. Due to
the difficulties in maintaining the pitch subsystem within its intended range of motion,
it was deduced that system identification needed to be conducted under closed-loop
system control.

For this system identification technique, a light PD controller was applied to the sys-
tem. The system was then commanded to its intended characterization point. Upon a
predetermined settling time, the control input was then excited with a Pseudo-Random
Binary Sequence (PRBS).

PRBS is a control signal excitation technique in which the control input is randomly fluc-
tuated by a set amplitude at pseudo-random, predetermined intervals [22]. By exciting
the control input, the resulting behavior and system dynamics could be observed while
the aforementioned PD controller attempted to bring the system back to its setpoint.
Key considerations in closed-loop PRBS excitation are ensuring that the amplitude of
the excitation is sufficient to bring the system off its setpoint and overcome noise, while
also ensuring that the amplitude of the excitation does not overpower the controller and
drive the system off its setpoint. Additionally, the intervals between the fluctuations of
the excitation need to be chosen such that the system’s dynamics are excited across a
variety of frequencies.

36

To ensure that the system undergoes excitation at all critical frequencies multiple times,
the PRBS characterization was run for an extended period. Trials typically lasted 30-
660 seconds. During these trials, the pitch subsystem’s input voltage and resulting
position were continuously recorded. This output data was saved as a CSV file, and an
additional MATLAB script was used to perform a mathematical characterization of the
system.

Similarly to the roll subsystem, the recorded output of the pitch subsystem was loaded
into a MATLAB script, and a variety of system identification techniques were applied to
the data.

From these results, it was determined that a 4th-order transfer function estimation was
the best method for characterizing the system.

After a 4th-order transfer function was fitted to the system using the MATLAB tfest

command, the state-space matrices were extracted using the ss command. The esti-
mated model’s accuracy was then determined by comparing the actual system behavior
based on the input to the predicted system behavior based on the system input using
the MATLAB compare command.

From this comparison, it was determined that the model accuracy was quite low when
compared to the real system response based on the input. However, when a con-
troller was designed around this model estimation, the actual systems positional error
remained less than 1 degree in both joints on average. So, while this poor system
estimation may point towards some underlying issues in the system identification tech-
nique, it ultimately resulted in a high-performing controller, which was the ultimate goal
of this research.

4.2.3. Multi-point System Identification

Due to the kinematics of the system, the force required of the motors at various joint
positions will vary. As the roll angle diverges farther from 0 in both the negative and
positive direction, there is an increase in gravitational forces seen by the actuators, and
as a result, the voltage applied to the motor would need to be increased accordingly.
This trend is theoretically illustrated in Figure 4.4.

37

Figure 4.4.: Theoretical trend of absolute motor voltage required for the roll subsystem as a
function of roll angle.

Figure 4.5.: Theoretical trend of required motor voltage for the pitch subsystem as a function of
pitch angle.

38

For the pitch subsystem, the force required by the actuator actually decreases as the
joint moves through its range of motion from -30 degrees to 30 degrees. The theo-
retical voltage required for the pitch subsystem across its range of motion is shown in
Figure 4.5.

Additionally, complexities are added to the system dynamics when one realizes that the
force required by the roll subsystem is also coupled to the pitch subsystem’s position.
As the pitch subsystem’s angle is increased, the force required by the roll subsequently
changes due to the system’s center of mass changing position.

Similarly, the force required by the pitch subsystem varies with the position of the roll
subsystem. As the roll subsystem diverges from the 0 point, the force required by
the pitch subsystem lessens as it stays farther from its default position (normal to the
gravitational force vector).

The combination of these factors necessitated the need for a more complex controller
strategy in which the controller gains varied in accordance with the system position. The
idea of this improved controller was that each joint’s gains would vary with the current
position of each subsystem.

This adaptive controller algorithm would require the characterization of the system at
multiple points of the system’s position. It was decided that 9 characterization points
would be used for each joint of the subsystem. The pitch would be varied from −15◦, 0◦,
15◦ and the roll subsystem would vary from −20◦, 0◦, 20◦. This resulted in the following
grid of 9 characterization points:

Table 4.3.: Grid of 9 Characterization Points for System Identification

Roll Angle (◦)

Pitch Angle (◦) -20 0 20

-15 (−15,−20) (−15, 0) (−15, 20)
0 (0,−20) (0, 0) (0, 20)
15 (15,−20) (15, 0) (15, 20)

Once the necessary characterization points were established, the system needed to
be identified at each of these points for each joint, resulting in the necessary system
identification procedures. The actual system identification process was fairly straight-
forward. The previously established strategy for each joint was used; the only difference
was that the positional setpoint for each characterization point varied to ensure the joint

39

not being characterized remained at the necessary setpoint. The controller designed
around the (0, 0) characterization point was used. While it was found that the dynamic
performance of the controller designed around the (0, 0) setpoint degraded as the sys-
tem diverged farther from the original linearization point, this controller performed well
enough in the case of a static setpoint that it could be used to hold the extreme angles
required by the multi-point system identification.

Once the necessary characterization points were established, the system needed to
be identified at each of these points for each joint, resulting in the necessary system
identification procedures. The actual system identification process was fairly straight-
forward. The previously established strategy for each joint was used; the only difference
was that the positional setpoint for each characterization point varied to ensure the joint
not being characterized remained at the necessary setpoint. The controller designed
around the (0, 0) characterization point was used. While it was found that the dynamic
performance of the controller designed around the (0, 0) setpoint degraded as the sys-
tem diverged farther from the original linearization point, this controller performed well
enough in the case of a static setpoint that it could be used to hold the extreme angles
required by the multi-point system identification.

Upon the completion of each system identification trial, the resulting
system response was saved in a CSV file under the following format:
IDENTIFIEDJOINT_ROLLANGLE_PITCHANGLE.csv. A MATLAB script was then used
to parse each of these files, identify the system at that point, and store and plot the
system identification results.

The specific implementation of the multi-point system identification for the roll joint is as
follows:

Data Loading and Preprocessing The raw sensor data is loaded from a CSV file. For
the Roll system, a step response is analyzed. The data is then trimmed to isolate the
relevant section around the step change, and normalized by subtracting initial values to
focus on the system’s response to the step input.

40

% Read CSV file with preserved headers
roll_data = readtable(’roll_step.csv’, ’VariableNamingRule’, ’preserve’);
% Extract time and normalize
roll_time = roll_data.time - roll_data.time(1);

5 % Extract roll data using original column names
roll_position = roll_data.(’roll_position’);
roll_velocity = roll_data.(’roll_velocity’);
roll_effort = roll_data.(’roll_effort’);

10 % Find step change time and trim data
velocity_threshold = 0.1;
roll_step_idx = find(abs(diff(roll_velocity)) > velocity_threshold, 1);
roll_trim_idx = roll_step_idx:min(roll_step_idx+500, length(roll_time));

15 % Prepare data for system ID (normalize to start from zero)
roll_y = roll_position(roll_trim_idx) - roll_position(roll_trim_idx(1));
roll_t = roll_time(roll_trim_idx) - roll_time(roll_trim_idx(1));
roll_u = roll_velocity(roll_trim_idx) - roll_velocity(roll_trim_idx(1));

Listing 4.11: Roll Data Loading and Preprocessing

System Identification (Transfer Function Estimation) Next, a 2nd-order transfer
function is estimated from the preprocessed input-output data using the tfest func-
tion. The iddata object encapsulates the input, output, and sampling time.

% Prepare data for system ID
2 roll_data_iddata = iddata(roll_y, roll_u, mean(diff(roll_t)));
% Fit transfer function (2nd-order)
roll_sys = tfest(roll_data_iddata, 2);

Listing 4.12: Roll Transfer Function Estimation

The estimated transfer function roll_sys is then converted to a state-space represen-
tation (roll_ss_sys) to facilitate LQR design.

State-Space Matrix Extraction and Controllability Check After obtaining the trans-
fer function, it is converted into a state-space representation. This form provides the
system matrices (A, B, C, D) which are essential for designing state-feedback controllers

41

like LQR. The controllability is than checked by examining the rank of the controllability
matrix.

1 % Convert to state-space
roll_ss_sys = ss(roll_sys);
roll_A = roll_ss_sys.A;
roll_B = roll_ss_sys.B;
roll_C = roll_ss_sys.C;

6 roll_D = roll_ss_sys.D;
% Check controllability
if rank(ctrb(roll_A, roll_B)) == size(roll_A, 1)

disp(’Roll System is controllable’);
else

11 error(’Roll System is uncontrollable! Check model.’);
end

Listing 4.13: Roll State-Space Extraction and Controllability Check

4.3. Controller Design

After system identification was performed, a controller can be designed for the specific
system. The controller design was paramount to this research; a high emphasis was
placed on system performance, and proper controller design would directly drive this.
As a result, a large amount of effort was put into both the design and tuning of the
controller.

4.3.1. Original PID Controller

The system originally utilized a very basic PID controller. Tuning was conducted with
the Ziegler-Nichols method, and the following gains were found for each subsystem:

Table 4.4.: Ziegler-Nichols PID Gains for Roll and Pitch Subsystems

Subsystem kp ki kd

Roll 35 50 5
Pitch 60 110 5

42

However, with these values, when full PID control was used, the system would rapidly
vibrate, leading to uncontrolled system behavior and unacceptable noise and vibra-
tion. Because of this, the original system was only ever used with PD control, and its
performance suffered greatly. Following sinusoidal trajectories, it would frequently un-
dershoot or overshoot the setpoint and responded poorly to perturbations. As a result,
an improved controller method needed to be developed.

4.3.2. MPC

During the initial ideation of the control algorithm several possible control schemes were
examined. One of these was model predictive control (MPC). MPC uses a dynamic
model of the system to predict system behavior and determine a control input based on
the model dynamics[23]. While this control technique is extremely high performance it
implementation was limited by both a limited model that only accounted for the mass
and inertia properties and the high computational power to simultaneously run and
predict the model’s behavior. This system utilized low-cost hardware with limited com-
putational resources and, as a result, lacked the computational power to perform MPC.

4.3.3. Gain Scheduling and Adaptive Control

It was clear that due to varying system dynamics across the system’s range of motion,
adaptive control or gain scheduling would be a very valuable asset for improving system
performance. Adaptive control estimates unknown or time-varying system parameters
based on real-time performance feedback [24]. In contrast, gain scheduling is a pre-
programmed approach where controller parameters are driven by preprogrammed and
scheduled gains[25].

With relatively little additional computational power and complexity, the control gains
could be calculated and interpolated based on the system’s position, making gain
scheduling an excellent candidate for improving system performance.

After the previously discussed multi-point system identification, a set of gains was cal-
culated for each characterization point. These gains were then stored in tables, and the
controller would interpolate between these gains based on the current position of the
system using the following code.

43

// === Linear interpolation between two values ===
double interpolate(double x, double x0, double x1, double y0, double y1) {

3 return y0 + (y1 - y0) ·((x - x0) / (x1 - x0));
}

Listing 4.14: Linear Interpolation for Gain Scheduling

The gains used for the roll and pitch subsystems are presented in Table 4.5, Table 4.6,
Table 4.7, Table 4.8, and Table 4.9. These gains were calculated based on the system
identification results and were tuned to achieve optimal performance at each character-
ization point. The specific calculation of these gains was done in Matlab at each point
using the following procedure:

For the roll axis, once the state-space matrices were identified at each point, the weight-
ing matrices Q and R were defined:

1 % LQR weight matrices
Q = diag([500, 0.25]); % Penalize position error more than velocity
R = 0.0075; % Penalize control effort

Listing 4.15: Weighting Matrix definition

The pitch axis used a very similar procedure; however, the Q matrix was augmented
with the Integral penalty component Qi:

% LQI weight matrices
2 Q = diag([500, 0.25, 0.01]); % Penalize position error more than velocity

Listing 4.16: LQI Weighting Matrix definition

Then, the LQR gains at each point could be calculated using the ‘lqr‘ Matlab command:

% Compute LQR gain
[K, S, CLP] = lqr(A, B, Q, R);

Listing 4.17: LQR and LQI Gain Calculation

This was done for each characterization point in the system for both pitch and roll and
resulted in the following gains:

44

Table 4.5.: Roll Proportional Gain (Kp) Table

Pitch
Roll

-15 0 15

-20 135.41 135.41 137.91
0 136.23 132.23 130.12

20 137.36 135.77 131.78

Table 4.6.: Roll Derivative Gain (Kd) Table

Pitch
Roll

-15 0 15

-20 0.6527 1.0829 0.43766
0 0.6854 0.7588 0.4810
20 0.6579 1.0788 0.42543

Table 4.7.: Pitch Proportional Gain (Kp) Table

Pitch
Roll

-15 0 15

-20 188.07 195.37 191.11
0 161.41 166.32 167.01

20 153.37 155.56 151.23

Table 4.8.: Pitch Derivative Gain (Kd) Table

Pitch
Roll

-15 0 15

-20 0.3124 0.3256 0.3154
0 0.3671 0.3671 0.3272

20 0.3643 0.3374 0.3576

45

Table 4.9.: Pitch Integral Gain (Ki) Table

Pitch
Roll

-15 0 15

-20 0.143744 0.185649 0.164665
0 0.135649 0.153566 0.155123

20 0.124432 0.155649 0.134566

4.3.4. LQR and LQI Control

Linear Quadratic Regulator (LQR) control and Linear Quadratic Integral (LQI) control
are cost-optimal control algorithms that minimize a quadratic cost function. LQI control
builds upon the efforts of LQR control by incorporating integral action in an effort to
reduce steady state error.

Both of these control methods are well-suited to this research as they achieve a good
balance of high system performance with minimal control efforts. LQR control was
chosen for the roll joint, and LQI control was chosen for the pitch joint in an effort to
minimize steady state error.

The objective of LQR control is to find a control input u(t) that minimizes the following
quadratic cost function:

JLQR =

∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt

where:

• x(t) is the state vector.

• u(t) is the control input vector.

• Q is a weighting matrix for the states, penalizing deviations from the desired state

• R is a weighting matrix for the control inputs, penalizing control effort.

For LQI control, the integral of the error is added to the system, and the cost function is
also minimized. If eI(t) represents the integral of the output error, the augmented state
xaug(t) includes the original states and the integral error. The cost function for LQI is

46

then:
JLQI =

∫ ∞

0
(xT

aug(t)Q̃xaug(t) + uT (t)Ru(t)) dt

where Q̃ is the augmented weighting matrix for the states, including a penalty on the
integral error to drive it to zero.

The specific Q and R matrices used for this controller were numerically determined by
trial and error during the research to maximize system while maintaining stability.

The following is a detailed implementation of the LQR and LQI controllers in the PSM
software.

Roll LQR Controller Implementation

The calculated LQR gains were input as a vector to the LQR control function along with
the commanded position and the actual position. From here several key variables were
initialized. The current time was determined and from this the ∆t value was calculated
then used to calculate the actual velocity. A low-pass filter was then applied to this
value. The velocity and positional error were then determined and the control input was
calculated from these error values scaled by their respective gains Kp and Kd. The
implementation of this in the system software can be seen below.

47

float compute_roll_LQR_control(float· gains, float commanded_position, float
actual_position) {
static float previous_position_roll = 0.0f;

3 static unsigned long previous_time_roll = 0;
static float filtered_velocity_roll = 0.0f;
const float alpha = 0.9f;

unsigned long current_time = micros();
8 float delta_time = (current_time - previous_time_roll) / 1000000.0f;

if (delta_time <= 0.0f) delta_time = 0.000001f;

float raw_velocity = (actual_position - previous_position_roll) /
delta_time;

filtered_velocity_roll = alpha ·filtered_velocity_roll + (1.0f - alpha) ·
raw_velocity;

13

previous_position_roll = actual_position;
previous_time_roll = current_time;

float position_error = commanded_position - actual_position;
18 float state[2] = {position_error, filtered_velocity_roll};

float control_input = 0.0f;
for (int i = 0; i < 2; i++) {

control_input -= gains[i] ·state[i];
23 }

return control_input;
}

Listing 4.18: Roll LQR Control Input Calculation

Pitch LQI Controller Implementation (with Feedforward)

The Pitch joint LQI controller implementation was very similar to the Roll joint LQR
controller implementation. The function input a gain vector along with actual position
and commanded positions. These values were then used to calculate the positional
and velocity error values. The positional error was then multiplied by ∆t to calculate the
integral error. These errors were scaled by their respective gain values and the control
input before feedforward control was calculated. To calculate the feedforward control

48

input component, the B† matrix is multiplied by the sum of the system’s A matrix and
the reference state. The Uff is then scaled by λ and added to the original control input.
The detailed software implementation can be seen below:

49

float compute_pitch_LQI_control(float· gains, float commanded_position, float
actual_position) {
static float previous_position_pitch = 0.0f;
static float previous_commanded_position_pitch = 0.0f;

4 static unsigned long previous_time_pitch = 0;
static float integral_error = 0.0f;
const float lambda = 0.0f;

const float A[2][2] = {{-4.3950, -2.3842}, {4.0000, 0.0}};
9 const float B_dagger[2][2] = {{0.5, 0.0}, {0.0, 0.0}};

unsigned long current_time = micros();
float delta_time = (current_time - previous_time_pitch) / 1000000.0f;
if (delta_time <= 0.0f) delta_time = 0.000001f;

14

float raw_velocity = (actual_position - previous_position_pitch) /
delta_time;

previous_position_pitch = actual_position;
previous_time_pitch = current_time;

19 float position_error = commanded_position - actual_position;
integral_error += position_error ·delta_time;

float state[3] = {position_error, raw_velocity, integral_error};

24 float control_input = 0.0f;
for (int i = 0; i < 3; i++) {

control_input -= gains[i] ·state[i];
}

29 float x_ref_dot = (commanded_position - previous_commanded_position_pitch)
/ delta_time;

previous_commanded_position_pitch = commanded_position;

float x_ref[2] = {commanded_position, x_ref_dot};
float u_ff = 0.0f;

34 for (int i = 0; i < 2; i++) {
float Ax_ref = 0.0f;
for (int j = 0; j < 2; j++) {

Ax_ref += A[i][j] ·x_ref[j];
}

39 u_ff += B_dagger[i][i] ·(Ax_ref + x_ref_dot);
}

control_input += lambda ·u_ff;

44 return control_input;
}

Listing 4.19: Pitch LQI Control with Feedforward

50

4.3.5. Feedforward Control

Feedforward control is a control method which attempts to anticipate changes or distur-
bances to the system’s input. It was theorized that a feedforward control strategy could
further reduce any remaining steady-state error in the pitch subsystem.

In order for feedforward control to be implemented, a model of the system must be
constructed in the form of a specific matrix known as the B† matrix. The B† matrix is
formulated through the Moore-Penrose pseudoinverse. It is formulated as follows:

Let B be an m × n real or complex matrix. Its Singular Value Decomposition (SVD) is
given by:

B = UΣV T

where:

• U is an m×m unitary (or orthogonal for real matrices) matrix whose columns are
the left singular vectors of B.

• Σ is an m× n rectangular diagonal matrix with non-negative real numbers on the
diagonal, called the singular values of B, typically arranged in decreasing order.

• V T is an n×n unitary (or orthogonal for real matrices) matrix whose rows are the
right singular vectors of B. (V is the matrix of right singular vectors).

The Moore-Penrose pseudoinverse of B, denoted B†, is then defined as:

B† = V Σ†UT

where Σ† is an n×m matrix formed by taking the reciprocal of each non-zero singular
value on the diagonal of Σ, and then transposing the matrix.

For the purpose of this research, this matrix could be calculated via the MATLAB com-
mand pinv. This command, when applied to the identified B matrix from the system
identification procedure, would result in the B† matrix.

This procedure was conducted for each of the characterization points previously dis-
cussed. Upon calculation of the B† matrix, this matrix is used to calculate uff by mul-
tiplying the B† matrix (pseudoinverse of the input matrix) with the sum of the system’s
A matrix multiplied by the reference state and the time derivative of the reference state.
This uff is then scaled by a factor λ, which can be tuned from 0 to 1.0 to adjust the
feedforward element of the controller.

51

The ultimate result of this control effort is to proactively cancel anticipated system dy-
namics and generate better system performance.

4.3.6. Comprehensive Control Strategy

The final controller for the system was a resulting combination of several of the con-
trol strategies previously discussed. Ultimately, for the roll joint, it was found that gain
scheduling with an LQR controller provided adequate system performance. However,
for the pitch subsystem, this method needed to be improved upon due to consistent
steady-state error in the form of target undershooting. To remedy this, an LQI controller
with feedforward implementation and gain scheduling was employed. These strategies
led to drastic improvements in system performance.

52

5. System evaluation

In order assess effectiveness of the controller design, a testing procedure was devel-
oped. This procedure and its associated results will be explored in this section.

5.1. Overview of Experiments

The performance of the control system was assessed through two types of experiments.
These were designed to assess performance under various trajectory conditions.

• Sinusoidal Path Following: In this experiment, the commanded trajectory con-
sisted of a pregenerated sinusoidal path which the system was required to follow.
The path was designed such that it would test the system’s performance in track-
ing a smooth, continuous trajectory while also maintaining stability. The period of
the sin wave was chosen to highlight rapid changes in desired trajectory velocities
that the system might experience. Its amplitude was selected to push the system
towards its positional limits in each axis. For the pitch axis a period of 3 seconds
with an amplitude of ±15 degrees was chosen whereas for the roll axis a period
of 3 seconds and an amplitude of ±20 degrees was chosen.

• Target Following: In this experiment the PSM followed real clinical trajectories
generated by the MTM in simulated surgical procedures. The MTM was used to
generate a path that both axes then attempted to follow. The exact 3D trajectory
followed during this experiment can be seen in Figure 5.1.

53

Figure 5.1.: The 3D trajectory generated by the MTM, representing a typical surgical movement
for target following experiments.

The newly developed control scheme was tested alongside the previously used con-
troller. During each experimental trial, the target position, actual positions, commanded
motor speed, and positional error were tracked, logged and then parsed and plotted by
a custom MATLAB script. The following sections detail the results of these experiments,
focusing on positional error performance.

5.2. Control Algorithm Performance

These experiments revealed a significant increase in performance for the new control al-
gorithm. During both the sinusoidal path following and trajectory following experiments,
the positional error was reduced in both the roll and pitch axes.

5.2.1. Sinusoidal Path Following Experiment Results

With the previous proportional control algorithm, the system consistently undershot the
target position and lagged behind the intended trajectory, particularly at the extrema
of the joint angles. This is highlighted in Figure 5.2 and Figure 5.3, which show the
system’s performance during sinusoidal path following with proportional control.

54

Figure 5.2.: Sinusoidal path following performance of the Roll axis with proportional control,
showing significant lag and overshoot.

Figure 5.3.: Sinusoidal path following performance of the Pitch axis with proportional control,
illustrating substantial undershoot and lag.

The performance of the new control algorithm for sinusoidal path following was excel-
lent. The system consistently followed the sinusoidal path with little to no lag, under-
shoot, or overshoot. This can clearly be seen in Figure 5.4 and Figure 5.5, where there

55

is almost no noticeable difference between the commanded position and the actual
position.

Figure 5.4.: Sinusoidal path following performance of the Pitch axis with the new LQI control
algorithm, demonstrating excellent tracking with minimal error.

Figure 5.5.: Sinusoidal path following performance of the Roll axis with the new LQR control
algorithm, showing near-perfect tracking.

56

With the proportional control algorithm, the error in the pitch axis reached a maximum
value of 2.31◦, while the error in the roll axis reached 1.17◦. The overall average error
for the pitch axis was 1.52◦, and the overall average error for the roll axis was 0.62◦.
These errors were particularly pronounced at the extrema of the joint angles, where the
system struggled to maintain accuracy and stability.

With the new control algorithms, the maximum error in the pitch axis was reduced to
0.35◦, and the maximum error in the roll axis was reduced to 0.41◦. Both of these errors
occurred at the extreme limits of their respective axes, and the average error of the pitch
axis over the trial was 0.12◦, while the value for the average error over the trial for the
roll DOF was 0.21◦.

The comparison of these errors between the control methods through the sinusoidal
path following procedure can be seen in Figure 5.6 and Figure 5.7, where it is clear that
the error for the new control method is much smaller than the older control method.

Figure 5.6.: Comparison of Roll axis tracking error for proportional control vs. the new LQR
control during sinusoidal path following.

57

Figure 5.7.: Comparison of Pitch axis tracking error for proportional control vs. the new LQI
control during sinusoidal path following.

During sinusoidal path following, the new control algorithm’s performance far exceeded
that of the previous design. However, this procedure is not fully representative of real-
world scenarios. During actual surgical procedures, the desired trajectory will very
rarely be such a smooth, predictable path. As a result of this shortcoming, the system’s
performance following a real trajectory path must be examined.

5.2.2. Target Following Experiment

Similarly to the sinusoidal path following experiment, the new control algorithm’s per-
formance in the target path following experiment far exceeded that of the older control
algorithm. This experiment used the 3D trajectory path shown in Figure 5.1, which is
representative of typical surgical movements.

58

Figure 5.8.: Target path following performance of the Pitch axis, comparing the old proportional
control to the new LQI control algorithm. The new controller exhibits significantly
improved tracking accuracy.

Figure 5.9.: Target path following performance of the Roll axis, comparing the old proportional
control to the new LQR control algorithm.

The reduction in error is clearly evident when comparing the old and new control meth-
ods. With the new LQR and LQI with feedforward control, the system maintained a
much tighter adherence to the desired trajectory. This is visually represented in the er-

59

ror plots in Figure 5.10 and Figure 5.11, which show a substantial decrease in tracking
error compared to the previous proportional control.

Figure 5.10.: Comparison of Roll axis tracking error for proportional control vs. the new LQR
control during complex target path following.

Figure 5.11.: Comparison of Pitch axis tracking error for proportional control vs. the new LQI
control during complex target path following.

60

6. Conclusion and Future Work

The research aims of this project were successfully achieved. The system software
architecture was updated from an Arduino C-based implementation to a more modern
ROS 2 software framework. Additionally, the overall system performance was drastically
improved through more robust system identification and control methods.

6.1. Key Findings

Updating the software framework provided few quantitative performance improvements;
however, qualitatively, the system framework is now more scalable. The SDF model
allows for future work in collision detection, and the node-based architecture of the
ROS 2 system created a robust platform for future development.

The improved system identification and control methods provided clear performance
gains. Both the maximum and average positional error seen by the system were dras-
tically reduced in all trials, and the system achieved smooth and stable performance
during trajectory tracking.

6.2. Limitations

Throughout this research, significant hardware limitations became apparent. The orig-
inal system was designed for ease of manufacturing and assembly, which led to many
components being 3D printed. While this method was a simple and low-cost way to
create the complex geometries required, the low stiffness of the plastic parts resulted
in poor system performance.

During movement, the end-effector tip could be seen oscillating, a behavior that would
be unacceptable in clinical procedures. Furthermore, prolonged use revealed that the

61

components exhibited plastic creep. Many linkages warped beyond their specified toler-
ances, causing binding within the system and, in some instances, overcoming press-fits
and disassembling during operation. Finally, the capstan cable tension proved incon-
sistent, frequently loosening and rendering previous system identifications obsolete.

Additionally the ROS 2 implementation is limited to core middleware functionalities,
and some advanced features such as security enhancements are not fully explored.
Finally due to resource constraints, long-term reliability and robustness tests were not
conducted. These limitations highlight potential areas for future research to extend the
applicability and performance of the system.

6.3. Recommendations for Future Work

Before further research is conducted, it is recommended that the system’s hardware be
improved. The superstructure of the joints should be redesigned for increased stiffness,
and more robust assembly methods must be employed. Additionally, a more consistent
tensioning method for the capstan drives should be implemented, or the reduction tech-
nique must be changed altogether.

6.4. Final Remarks

Despite its hardware shortcomings, the objectives of this research were achieved. The
system’s software architecture was updated to a modern ROS 2 standard, and its per-
formance was greatly improved through more robust identification and control tech-
niques. While the system still requires improvements before it can replicate clinical
procedures, the research conducted in this paper lays the groundwork for future devel-
opment.

62

Bibliography

[1] A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers, “Robotic surgery:
a current perspective,” Annals of Surgery, vol. 239, no. 1, pp. 14–20, 2004.

[2] Johns Hopkins University and Intuitive Surgical, “The da Vinci Research Kit
(dVRK) Components,” https://research.intusurg.com/index.php/Main_Page, 2025,
accessed: July 14, 2025.

[3] Johns Hopkins University and Worcester Polytechnic Institute and Intuitive
Surgical. (2025) The da Vinci Research Kit (dVRK) Documentation. Accessed:
July 14, 2025. [Online]. Available: https://dvrk.readthedocs.io/main/index.html

[4] B. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng, D. Glozman,
J. Ma, S. N. Kosari, and L. White, “Raven-ii: An open platform for surgical robotics
research,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 4, pp. 954–
959, 2013.

[5] G. A. Fontanelli, F. Ficuciello, L. Villani, and B. Siciliano, “Modelling and
identification of the da vinci research kit robotic arms,” 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
1464–1469, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
1928260

[6] B. Hannaford, J. Rosen, D. W. Friedman, H. King, M. Sinanan, and R. Satava,
“Raven-ii: An open platform for surgical robotics research,” IEEE Transactions on
Biomedical Engineering, vol. 60, no. 4, pp. 954–959, 2013.

[7] RobotsGuide.com. (2024) Raven Surgical Robot. [Online]. Available: https:
//robotsguide.com/robots/ravensurgical/

[8] Z. Chen, A. Deguet, R. Taylor, S. Dimaio, G. Fischer, and P. Kazanzides, “An
open-source hardware and software platform for telesurgical robotics research,”
The MIDAS Journal, 08 2013.

63

https://research.intusurg.com/index.php/Main_Page
https://dvrk.readthedocs.io/main/index.html
https://api.semanticscholar.org/CorpusID:1928260
https://api.semanticscholar.org/CorpusID:1928260
https://robotsguide.com/robots/ravensurgical/
https://robotsguide.com/robots/ravensurgical/

[9] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/scirobotics.abm6074

[10] P. Kazanzides, P. Oppenheimer, X. Chai, J. Lee, R. Khakha, F. Chen, R. H. Taylor,
G. H. F. Johnson, K. Y. Chiu, Y. Lee, R. N. H. Taylor, R. H. S. Taylor, and T. Maros,
“The da Vinci Research Kit: A Platform for Open Surgical Robotics Research,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2014, pp. 2455–2461.

[11] A. M. Okamura, F. Simone, and M. D. O’Leary, “Force feedback for robotic surgery,”
IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 26–30,
2001.

[12] R. Maier, F. Schick, D. Heger, C. D. Klink, M. Gessat, J. Roth, J. Schipper, J. Weiler,
F. Nickel, and R. Dillmann, “The role of image guidance for robotic-assisted surgery
– A review,” International Journal of Computer Assisted Radiology and Surgery,
vol. 10, no. 10, pp. 1587–1604, 2015.

[13] H. Wang, Z. Li, L. Xu, L. Zhang, J. Zhang, Y. Zheng, and G. Yan, “Deep Learning for
Real-time Tissue Classification in Robotic Surgery,” IEEE Transactions on Medical
Imaging, vol. 39, no. 6, pp. 2174–2184, 2020.

[14] X.-G. Xia, “System Identification Using Chirp Signals and Time-Variant Filters
in the Joint Time-Frequency Domain,” IEEE Transactions on Signal Processing,
vol. 45, no. 8, pp. 2072–2084, aug 1997.

[15] A. B. Martinsen, A. M. Lekkas, and S. Gros, “Combining system identification
with reinforcement learning-based mpc,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 8130–8135, 2020, 21st IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896320329542

[16] T. Oddos, G. Stamatas, C. Coret, J. Hourihane, and A. D. Irvine, “Robotic
surgical system with improved control based on actuator characterization,”
Patent US20 230 309 921A1, 2023. [Online]. Available: https://patents.google.
com/patent/US20230309921A1

[17] A. Walder, “Design and validation of a teleoperated surgical training system,” Mas-
ter of Science in Engineering, Management Center Innsbruck, Innsbruck, 2022,
student ID: 2010869015.

64

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.sciencedirect.com/science/article/pii/S2405896320329542
https://patents.google.com/patent/US20230309921A1
https://patents.google.com/patent/US20230309921A1

[18] M. Preiss, A. Walder, and Y. Kim, “Haptically enhanced vr surgical training system,”
Current Directions in Biomedical Engineering, vol. 8, no. 2, pp. 737–740, 2022.

[19] M. Messner, “Design and development of a scaled-down teleoperative surgical
robotic system for training applications,” 2025.

[20] ROS Wiki and S. Brawner, “SolidWorks to URDF Exporter,” https://wiki.ros.org/sw_
urdf_exporter, accessed: 2025-07-18.

[21] BruceChanJianLe, “ign-gz-urdf-to-sdf,” https://github.com/BruceChanJianLe/
ign-gz-urdf-to-sdf, accessed: 2025-07-18.

[22] L. I. U. Bo, Z. H. A. O. Jun, and Q. I. A. N. Jixin, “Design and analysis of test
signals for system identification,” in Computational Science – ICCS 2006, V. N.
Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 593–600.

[23] K. S. Holkar and L. M. Waghmare, “An overview of model predictive control,” Inter-
national Journal of control and automation, vol. 3, no. 4, pp. 47–63, 2010.

[24] K. J. Åström, Adaptive Control. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1991, pp. 437–450. [Online]. Available: https://doi.org/10.1007/
978-3-662-08546-2_24

[25] V. Fromion and G. Scorletti, “A theoretical framework for gain scheduling,”
International Journal of Robust and Nonlinear Control, vol. 13, no. 10, pp.
951–982, 2003. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/rnc.748

VIII

https://wiki.ros.org/sw_urdf_exporter
https://wiki.ros.org/sw_urdf_exporter
https://github.com/BruceChanJianLe/ign-gz-urdf-to-sdf
https://github.com/BruceChanJianLe/ign-gz-urdf-to-sdf
https://doi.org/10.1007/978-3-662-08546-2_24
https://doi.org/10.1007/978-3-662-08546-2_24
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.748
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.748

List of Figures

2.1. The Original Da Vinci Research Kit.(Reprinted from [5] Fig 1) 5
2.2. The Raven II surgical system design. In this figure the cable driven de-

sign can clearly be seen (Reprinted from [6] Fig 1) 6
2.3. An overview of a typical ROS 2 node network consisting of subscription

nodes and publishing nodes, actions and service types can also be seen
(Reprinted from [9] Fig 2) . 7

3.1. Overview of the Desktop Teleoperated Surgical Training System, illustrat-
ing the MTM and PSM components. 10

3.2. Overview of the MTM with indicated DOFs. 11
3.3. Overview of the PSM with indicated DOFs. 12
3.4. Detailed view of the MTM’s J1 joint design (Reprinted from [17] Fig 2.1) . 14
3.5. Detailed overview of the MTM’s GCS design. (Reprinted from [17] Fig 2.9) 15
3.6. Detailed view of the mechanical design of the roll axis, highlighting the

main shaft design. (Reprinted from [17] Fig 2.10) 17
3.7. A detailed view of the PSM’s pitch and roll GCS design. (Reprinted from

[17] Fig. 2.22) . 18
3.8. Detailed view of the PSM’s pitch axis mechanism. (Reprinted from [17]

Fig 2.13) . 19
3.9. Detailed view of the PSM’s insertion axis mechanism. (Reprinted from

[17] Fig 2.14) . 20
3.10.Detailed view of the PSM’s tool cart, highlighting the spring-loaded com-

pliance mechanism. (Reprinted from [17] Fig 2.15) 21
3.11.The MTM and its associated degrees of freedom shown in their zero-

position with DH-coordinate frames attached (Reprinted from [17] Fig 3.1) 24
3.12.The updated gimbal and its associated degrees of freedom shown in their

zero-position. (Reprinted from [19] Fig 2.1) 24

IX

3.13.The PSM and endowrist tool shown in their zero-position with
DH-coordinate frames attached, according to the cDH convention.
(Reprinted from [17] Fig 3.2) . 25

4.1. Initial ROS 2 System Architecture for Target Pose Calculation. 26
4.2. Simplified ROS 2 System Architecture for Direct Target Pose Streaming. . 27
4.3. SDF model of MTM shown in the RViz environment. The gimbal solid

models have been hidden in this model 28
4.4. Theoretical trend of absolute motor voltage required for the roll subsys-

tem as a function of roll angle. 38
4.5. Theoretical trend of required motor voltage for the pitch subsystem as a

function of pitch angle. 38

5.1. The 3D trajectory generated by the MTM, representing a typical surgical
movement for target following experiments. 54

5.2. Sinusoidal path following performance of the Roll axis with proportional
control, showing significant lag and overshoot. 55

5.3. Sinusoidal path following performance of the Pitch axis with proportional
control, illustrating substantial undershoot and lag. 55

5.4. Sinusoidal path following performance of the Pitch axis with the new LQI
control algorithm, demonstrating excellent tracking with minimal error. . . 56

5.5. Sinusoidal path following performance of the Roll axis with the new LQR
control algorithm, showing near-perfect tracking. 56

5.6. Comparison of Roll axis tracking error for proportional control vs. the new
LQR control during sinusoidal path following. 57

5.7. Comparison of Pitch axis tracking error for proportional control vs. the
new LQI control during sinusoidal path following. 58

5.8. Target path following performance of the Pitch axis, comparing the old
proportional control to the new LQI control algorithm. The new controller
exhibits significantly improved tracking accuracy. 59

5.9. Target path following performance of the Roll axis, comparing the old
proportional control to the new LQR control algorithm. 59

5.10.Comparison of Roll axis tracking error for proportional control vs. the new
LQR control during complex target path following. 60

5.11.Comparison of Pitch axis tracking error for proportional control vs. the
new LQI control during complex target path following. 60

X

List of Tables

3.1. MTM Joint Classification and Positional Sensing. 10
3.2. PSM Joint Classification and Drive System. 11
3.3. PSM Joint Specifications . 21
3.4. Initial PID Constants . 23

4.1. MTM ROS2 Topics . 30
4.2. Overview of Primary Files in the PSM Software Codebase 34
4.3. Grid of 9 Characterization Points for System Identification 39
4.4. Ziegler-Nichols PID Gains for Roll and Pitch Subsystems 42
4.5. Roll Proportional Gain (Kp) Table . 45
4.6. Roll Derivative Gain (Kd) Table . 45
4.7. Pitch Proportional Gain (Kp) Table . 45
4.8. Pitch Derivative Gain (Kd) Table . 45
4.9. Pitch Integral Gain (Ki) Table . 46

XI

A. Source Code Repositories

This chapter contains references to the public GitHub repositories containing the source
code and models developed for this thesis.

A.1. PSM Firmware

Contains the source code for the Power Supply Module (PSM). Repository URL:

https://github.com/liamjosephnolan/psm_src

A.2. MTM Firmware

Contains the source code for the Master Thesis Motor (MTM) controller. Repository

URL: https://github.com/liamjosephnolan/mtm_src

A.3. MATLAB Scripts

Contains the MATLAB scripts used for system identification, controller design, and gen-
erating plots for this thesis. Repository URL: https://github.com/liamjosephnolan/

thesis_matlab

A.4. MTM SDF Model

Contains the Simulation Description Format (SDF) model of the MTM for use in the
Gazebo simulator. Repository URL: https://github.com/liamjosephnolan/mtm_sdf

XII

https://github.com/liamjosephnolan/psm_src
https://github.com/liamjosephnolan/mtm_src
https://github.com/liamjosephnolan/thesis_matlab
https://github.com/liamjosephnolan/thesis_matlab
https://github.com/liamjosephnolan/mtm_sdf

A.5. MTM Joint Publisher

Contains the source code for the ROS 2 node that acts as a bridge between the MTM
Micro-ROS node and the Gazebo SDF model. Repository URL: https://github.

com/liamjosephnolan/mtm_joint_publisher ""

XIII

https://github.com/liamjosephnolan/mtm_joint_publisher
https://github.com/liamjosephnolan/mtm_joint_publisher

	Introduction
	Background and Context
	Problem Statement
	Research Aim and Objectives
	Scope

	Background and State of the Art
	The da Vinci Research Kit
	The Raven II Surgical System
	Robot Operating System 2
	Control Techniques in Robotic Surgery
	System Identification Techniques in Robotic Surgery
	Summary and Research Motivation

	Desktop Teleoperated Surgical Training System
	Overall System Architecture
	MTM Overview
	PSM Overview

	MTM Mechanical Design
	Superstructure Design
	Arm Joint Design

	MTM Electrical Architecture
	System Overview
	Joint Subsystems
	Gimbal Subsystem

	PSM Mechanical Design
	Overview
	Superstructure
	Roll Axis
	Pitch Axis
	Insertion Axis
	Tool Cart and End Effector

	PSM Electrical Architecture
	System Software Architecture
	MTM Software
	PSM Software

	System Controller Design
	System Kinematics and Coordinate Frames
	MTM Coordinate Frame
	PSM and Tool Coordinate Frame

	Implementation on Current Hardware
	Software Architecture
	ROS 2 System Architecture
	MTM Modeling and Visualization
	MicroROS Implementation
	MTM Data Streaming and filtering
	MTM to PSM Communication Protocol
	PSM Software

	System Identification
	Roll Joint Open Loop Step Response
	Closed Loop Excitation Through PRBS
	Multi-point System Identification

	Controller Design
	Original PID Controller
	MPC
	Gain Scheduling and Adaptive Control
	LQR and LQI Control
	Feedforward Control
	Comprehensive Control Strategy

	System evaluation
	Overview of Experiments
	Control Algorithm Performance
	Sinusoidal Path Following Experiment Results
	Target Following Experiment

	Conclusion and Future Work
	Key Findings
	Limitations
	Recommendations for Future Work
	Final Remarks

	Bibliography
	List of Figures
	List of Tables
	Source Code Repositories
	PSM Firmware
	MTM Firmware
	MATLAB Scripts
	MTM SDF Model
	MTM Joint Publisher

